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Exercise 1.4.1

Determine the equilibrium temperature distribution for a one-dimensional rod with constant
thermal properties with the following sources and boundary conditions:

(a) Q = 0, u(0) = 0, u(L) = T

(b) Q = 0, u(0) = T , u(L) = 0

(c) Q = 0,
∂u

∂x
(0) = 0, u(L) = T

(d) Q = 0, u(0) = T ,
∂u

∂x
(L) = α

(e)
Q

K0
= 1, u(0) = T1, u(L) = T2

(f)
Q

K0
= x2, u(0) = T ,

∂u

∂x
(L) = 0

(g) Q = 0, u(0) = T ,
∂u

∂x
(L) + u(L) = 0

(h) Q = 0,
∂u

∂x
(0)− [u(0)− T ] = 0,

∂u

∂x
(L) = α

Solution

The heat equation for a one-dimensional rod with constant thermal properties, ρ, c, and K0, and
a heat source Q is

ρc
∂u

∂t
= K0

∂2u

∂x2
+Q.

Part (a)

With Q = 0 the PDE reduces to

ρc
∂u

∂t
= K0

∂2u

∂x2
.

At equilibrium the temperature does not change in time, so ∂u/∂t vanishes. u is only a function
of x now.

0 = K0
d2u

dx2
→ d2u

dx2
= 0

The general solution to this ODE is obtained by integrating both sides with respect to x twice.

du

dx
= C1

u(x) = C1x+ C2

Apply the boundary conditions here to determine C1 and C2.

u(0) = C2 = 0

u(L) = C1L+ C2 = T

Solving the second equation for C1 gives C1 = T/L. Therefore, the equilibrium temperature
distribution is

u(x) =
T

L
x.
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Part (b)

With Q = 0 the PDE reduces to

ρc
∂u

∂t
= K0

∂2u

∂x2
.

At equilibrium the temperature does not change in time, so ∂u/∂t vanishes. u is only a function
of x now.

0 = K0
d2u

dx2
→ d2u

dx2
= 0

The general solution to this ODE is obtained by integrating both sides with respect to x twice.

du

dx
= C1

u(x) = C1x+ C2

Apply the boundary conditions here to determine C1 and C2.

u(0) = C2 = T

u(L) = C1L+ C2 = 0

Solving the second equation for C1 gives C1 = −T/L. Therefore, the equilibrium temperature
distribution is

u(x) = −T
L
x+ T

=
T

L
(L− x).

Part (c)

With Q = 0 the PDE reduces to

ρc
∂u

∂t
= K0

∂2u

∂x2
.

At equilibrium the temperature does not change in time, so ∂u/∂t vanishes. u is only a function
of x now.

0 = K0
d2u

dx2
→ d2u

dx2
= 0

The general solution to this ODE is obtained by integrating both sides with respect to x twice.

du

dx
= C1

Apply the first boundary condition here.

du

dx
(0) = C1 = 0

So we have
du

dx
= 0.

Integrate both sides once more.
u(x) = C2
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Use the second boundary condition to determine C2.

u(L) = C2 = T

Therefore, the equilibrium temperature distribution is

u(x) = T.

Part (d)

With Q = 0 the PDE reduces to

ρc
∂u

∂t
= K0

∂2u

∂x2
.

At equilibrium the temperature does not change in time, so ∂u/∂t vanishes. u is only a function
of x now.

0 = K0
d2u

dx2
→ d2u

dx2
= 0

The general solution to this ODE is obtained by integrating both sides with respect to x twice.

du

dx
= C1

Apply the second boundary condition here.

du

dx
(L) = C1 = α

So we have
du

dx
= α.

Integrate both sides once more.
u(x) = αx+ C2

Use the first boundary condition to determine C2.

u(0) = C2 = T

Therefore, the equilibrium temperature distribution is

u(x) = αx+ T.

Part (e)

With Q = K0 the PDE reduces to

ρc
∂u

∂t
= K0

∂2u

∂x2
+K0.

At equilibrium the temperature does not change in time, so ∂u/∂t vanishes. u is only a function
of x now.

0 = K0
d2u

dx2
+K0 → d2u

dx2
= −1
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The general solution to this ODE is obtained by integrating both sides with respect to x twice.

du

dx
= −x+ C1

u(x) = −x
2

2
+ C1x+ C2

Apply the boundary conditions here to determine C1 and C2.

u(0) = C2 = T1

u(L) = −L
2

2
+ C1L+ C2 = T2

Solving the second equation for C1 gives

C1 =
T2 − T1
L

+
L

2
.

Therefore, the equilibrium temperature distribution is

u(x) = −x
2

2
+

(
T2 − T1
L

+
L

2

)
x+ T1.

Part (f)

With Q = K0x
2 the PDE reduces to

ρc
∂u

∂t
= K0

∂2u

∂x2
+K0x

2.

At equilibrium the temperature does not change in time, so ∂u/∂t vanishes. u is only a function
of x now.

0 = K0
d2u

dx2
+K0x

2 → d2u

dx2
= −x2

The general solution to this ODE is obtained by integrating both sides with respect to x twice.

du

dx
= −x

3

3
+ C1

Apply the second boundary condition here.

du

dx
(L) = −L

3

3
+ C1 = 0 → C1 =

L3

3

So we have
du

dx
= −x

3

3
+
L3

3
.

Integrate both sides once more.

u(x) = −x
4

12
+
L3

3
x+ C2

Use the first boundary condition to determine C2.

u(0) = C2 = T
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Therefore, the equilibrium temperature distribution is

u(x) = −x
4

12
+
L3

3
x+ T.

Part (g)

With Q = 0 the PDE reduces to

ρc
∂u

∂t
= K0

∂2u

∂x2
.

At equilibrium the temperature does not change in time, so ∂u/∂t vanishes. u is only a function
of x now.

0 = K0
d2u

dx2
→ d2u

dx2
= 0

The general solution to this ODE is obtained by integrating both sides with respect to x twice.

du

dx
= C1

u(x) = C1x+ C2

Apply the boundary conditions here to determine C1 and C2.

u(0) = C2 = T

du

dx
(L) + u(L) = C1 + C1L+ C2 = 0

Solving the second equation for C1 gives

C1 = −
T

1 + L
.

Therefore, the equilibrium temperature distribution is

u(x) = − T

1 + L
x+ T

=
T

L+ 1
(L+ 1− x).

Part (h)

With Q = 0 the PDE reduces to

ρc
∂u

∂t
= K0

∂2u

∂x2
.

At equilibrium the temperature does not change in time, so ∂u/∂t vanishes. u is only a function
of x now.

0 = K0
d2u

dx2
→ d2u

dx2
= 0

The general solution to this ODE is obtained by integrating both sides with respect to x twice.

du

dx
= C1
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Apply the second boundary condition here.

du

dx
(L) = C1 = α

So we have
du

dx
= α.

Integrate both sides once more.
u(x) = αx+ C2

Use the first boundary condition to determine C2.

du

dx
(0)− [u(0)− T ] = α− [C2 − T ] = 0

Solving the equation gives C2 = α+ T . Therefore, the equilibrium temperature distribution is

u(x) = αx+ α+ T

= α(x+ 1) + T.
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