Exercise 1.4.1

Determine the equilibrium temperature distribution for a one-dimensional rod with constant thermal properties with the following sources and boundary conditions:

$$
\begin{array}{lll}
\text { (a) } & Q=0, & u(0)=0, \\
\text { (b) } & Q=0, & u(0)=T, \\
\text { (c) } & Q=0, & \frac{\partial u}{\partial x}(0)=0, \\
\text { (d) } & Q=0, & u(0)=T, \\
\text { (e) } & \frac{Q}{K_{0}}=1, & u(0)=T)=0 \\
\text { (f) } & \frac{Q}{K_{0}}=x^{2}, & u(0)=T, \\
\text { (g) } & Q=0, & u(L)=T \\
\text { (h) } & Q=0, & \frac{\partial u}{\partial x}(L)=\alpha \\
\frac{\partial u}{\partial x}(0)-[u(0)-T]=0, & \frac{\partial u}{\partial x}(L)=\alpha
\end{array}
$$

Solution

The heat equation for a one-dimensional rod with constant thermal properties, ρ, c, and K_{0}, and a heat source Q is

$$
\rho c \frac{\partial u}{\partial t}=K_{0} \frac{\partial^{2} u}{\partial x^{2}}+Q .
$$

Part (a)

With $Q=0$ the PDE reduces to

$$
\rho c \frac{\partial u}{\partial t}=K_{0} \frac{\partial^{2} u}{\partial x^{2}} .
$$

At equilibrium the temperature does not change in time, so $\partial u / \partial t$ vanishes. u is only a function of x now.

$$
0=K_{0} \frac{d^{2} u}{d x^{2}} \quad \rightarrow \quad \frac{d^{2} u}{d x^{2}}=0
$$

The general solution to this ODE is obtained by integrating both sides with respect to x twice.

$$
\begin{gathered}
\frac{d u}{d x}=C_{1} \\
u(x)=C_{1} x+C_{2}
\end{gathered}
$$

Apply the boundary conditions here to determine C_{1} and C_{2}.

$$
\begin{aligned}
u(0) & =C_{2}=0 \\
u(L) & =C_{1} L+C_{2}=T
\end{aligned}
$$

Solving the second equation for C_{1} gives $C_{1}=T / L$. Therefore, the equilibrium temperature distribution is

$$
u(x)=\frac{T}{L} x
$$

Part (b)

With $Q=0$ the PDE reduces to

$$
\rho c \frac{\partial u}{\partial t}=K_{0} \frac{\partial^{2} u}{\partial x^{2}} .
$$

At equilibrium the temperature does not change in time, so $\partial u / \partial t$ vanishes. u is only a function of x now.

$$
0=K_{0} \frac{d^{2} u}{d x^{2}} \quad \rightarrow \quad \frac{d^{2} u}{d x^{2}}=0
$$

The general solution to this ODE is obtained by integrating both sides with respect to x twice.

$$
\begin{gathered}
\frac{d u}{d x}=C_{1} \\
u(x)=C_{1} x+C_{2}
\end{gathered}
$$

Apply the boundary conditions here to determine C_{1} and C_{2}.

$$
\begin{aligned}
u(0) & =C_{2}=T \\
u(L) & =C_{1} L+C_{2}=0
\end{aligned}
$$

Solving the second equation for C_{1} gives $C_{1}=-T / L$. Therefore, the equilibrium temperature distribution is

$$
\begin{aligned}
u(x) & =-\frac{T}{L} x+T \\
& =\frac{T}{L}(L-x) .
\end{aligned}
$$

Part (c)

With $Q=0$ the PDE reduces to

$$
\rho c \frac{\partial u}{\partial t}=K_{0} \frac{\partial^{2} u}{\partial x^{2}} .
$$

At equilibrium the temperature does not change in time, so $\partial u / \partial t$ vanishes. u is only a function of x now.

$$
0=K_{0} \frac{d^{2} u}{d x^{2}} \quad \rightarrow \quad \frac{d^{2} u}{d x^{2}}=0
$$

The general solution to this ODE is obtained by integrating both sides with respect to x twice.

$$
\frac{d u}{d x}=C_{1}
$$

Apply the first boundary condition here.

$$
\frac{d u}{d x}(0)=C_{1}=0
$$

So we have

$$
\frac{d u}{d x}=0 .
$$

Integrate both sides once more.

$$
u(x)=C_{2}
$$

Use the second boundary condition to determine C_{2}.

$$
u(L)=C_{2}=T
$$

Therefore, the equilibrium temperature distribution is

$$
u(x)=T .
$$

Part (d)

With $Q=0$ the PDE reduces to

$$
\rho c \frac{\partial u}{\partial t}=K_{0} \frac{\partial^{2} u}{\partial x^{2}} .
$$

At equilibrium the temperature does not change in time, so $\partial u / \partial t$ vanishes. u is only a function of x now.

$$
0=K_{0} \frac{d^{2} u}{d x^{2}} \quad \rightarrow \quad \frac{d^{2} u}{d x^{2}}=0
$$

The general solution to this ODE is obtained by integrating both sides with respect to x twice.

$$
\frac{d u}{d x}=C_{1}
$$

Apply the second boundary condition here.

$$
\frac{d u}{d x}(L)=C_{1}=\alpha
$$

So we have

$$
\frac{d u}{d x}=\alpha
$$

Integrate both sides once more.

$$
u(x)=\alpha x+C_{2}
$$

Use the first boundary condition to determine C_{2}.

$$
u(0)=C_{2}=T
$$

Therefore, the equilibrium temperature distribution is

$$
u(x)=\alpha x+T
$$

Part (e)

With $Q=K_{0}$ the PDE reduces to

$$
\rho c \frac{\partial u}{\partial t}=K_{0} \frac{\partial^{2} u}{\partial x^{2}}+K_{0} .
$$

At equilibrium the temperature does not change in time, so $\partial u / \partial t$ vanishes. u is only a function of x now.

$$
0=K_{0} \frac{d^{2} u}{d x^{2}}+K_{0} \quad \rightarrow \quad \frac{d^{2} u}{d x^{2}}=-1
$$

The general solution to this ODE is obtained by integrating both sides with respect to x twice.

$$
\begin{gathered}
\frac{d u}{d x}=-x+C_{1} \\
u(x)=-\frac{x^{2}}{2}+C_{1} x+C_{2}
\end{gathered}
$$

Apply the boundary conditions here to determine C_{1} and C_{2}.

$$
\begin{aligned}
u(0) & =C_{2}=T_{1} \\
u(L) & =-\frac{L^{2}}{2}+C_{1} L+C_{2}=T_{2}
\end{aligned}
$$

Solving the second equation for C_{1} gives

$$
C_{1}=\frac{T_{2}-T_{1}}{L}+\frac{L}{2} .
$$

Therefore, the equilibrium temperature distribution is

$$
u(x)=-\frac{x^{2}}{2}+\left(\frac{T_{2}-T_{1}}{L}+\frac{L}{2}\right) x+T_{1} .
$$

$\underline{\text { Part (f) }}$
With $Q=K_{0} x^{2}$ the PDE reduces to

$$
\rho c \frac{\partial u}{\partial t}=K_{0} \frac{\partial^{2} u}{\partial x^{2}}+K_{0} x^{2} .
$$

At equilibrium the temperature does not change in time, so $\partial u / \partial t$ vanishes. u is only a function of x now.

$$
0=K_{0} \frac{d^{2} u}{d x^{2}}+K_{0} x^{2} \quad \rightarrow \quad \frac{d^{2} u}{d x^{2}}=-x^{2}
$$

The general solution to this ODE is obtained by integrating both sides with respect to x twice.

$$
\frac{d u}{d x}=-\frac{x^{3}}{3}+C_{1}
$$

Apply the second boundary condition here.

$$
\frac{d u}{d x}(L)=-\frac{L^{3}}{3}+C_{1}=0 \quad \rightarrow \quad C_{1}=\frac{L^{3}}{3}
$$

So we have

$$
\frac{d u}{d x}=-\frac{x^{3}}{3}+\frac{L^{3}}{3} .
$$

Integrate both sides once more.

$$
u(x)=-\frac{x^{4}}{12}+\frac{L^{3}}{3} x+C_{2}
$$

Use the first boundary condition to determine C_{2}.

$$
u(0)=C_{2}=T
$$

Therefore, the equilibrium temperature distribution is

$$
u(x)=-\frac{x^{4}}{12}+\frac{L^{3}}{3} x+T
$$

Part (g)

With $Q=0$ the PDE reduces to

$$
\rho c \frac{\partial u}{\partial t}=K_{0} \frac{\partial^{2} u}{\partial x^{2}} .
$$

At equilibrium the temperature does not change in time, so $\partial u / \partial t$ vanishes. u is only a function of x now.

$$
0=K_{0} \frac{d^{2} u}{d x^{2}} \quad \rightarrow \quad \frac{d^{2} u}{d x^{2}}=0
$$

The general solution to this ODE is obtained by integrating both sides with respect to x twice.

$$
\begin{gathered}
\frac{d u}{d x}=C_{1} \\
u(x)=C_{1} x+C_{2}
\end{gathered}
$$

Apply the boundary conditions here to determine C_{1} and C_{2}.

$$
\begin{aligned}
u(0) & =C_{2}=T \\
\frac{d u}{d x}(L)+u(L) & =C_{1}+C_{1} L+C_{2}=0
\end{aligned}
$$

Solving the second equation for C_{1} gives

$$
C_{1}=-\frac{T}{1+L}
$$

Therefore, the equilibrium temperature distribution is

$$
\begin{aligned}
u(x) & =-\frac{T}{1+L} x+T \\
& =\frac{T}{L+1}(L+1-x) .
\end{aligned}
$$

Part (h)

With $Q=0$ the PDE reduces to

$$
\rho c \frac{\partial u}{\partial t}=K_{0} \frac{\partial^{2} u}{\partial x^{2}} .
$$

At equilibrium the temperature does not change in time, so $\partial u / \partial t$ vanishes. u is only a function of x now.

$$
0=K_{0} \frac{d^{2} u}{d x^{2}} \quad \rightarrow \quad \frac{d^{2} u}{d x^{2}}=0
$$

The general solution to this ODE is obtained by integrating both sides with respect to x twice.

$$
\frac{d u}{d x}=C_{1}
$$

Apply the second boundary condition here.

$$
\frac{d u}{d x}(L)=C_{1}=\alpha
$$

So we have

$$
\frac{d u}{d x}=\alpha
$$

Integrate both sides once more.

$$
u(x)=\alpha x+C_{2}
$$

Use the first boundary condition to determine C_{2}.

$$
\frac{d u}{d x}(0)-[u(0)-T]=\alpha-\left[C_{2}-T\right]=0
$$

Solving the equation gives $C_{2}=\alpha+T$. Therefore, the equilibrium temperature distribution is

$$
\begin{aligned}
u(x) & =\alpha x+\alpha+T \\
& =\alpha(x+1)+T .
\end{aligned}
$$

